000000031 001__ 31 000000031 005__ 20250507133255.0 000000031 02470 $$a10.3886/tt1k-sk28$$2DOI 000000031 037__ $$aADMIN 000000031 245__ $$aExposure to Facebook Posts with Civic News Domains 000000031 251__ $$av1 000000031 269__ $$a2023-07-27 000000031 336__ $$aDataset 000000031 500__ $$aThe U.S. 2020 Facebook and Instagram Election Study (US 2020 FIES) is a partnership between Meta and academic researchers to understand the impact of Facebook and Instagram on key political attitudes and behaviors during the US 2020 election. 000000031 510__ $$aMeta Platforms, Inc. Exposure to Facebook Posts with Civic News Domains. Inter-university Consortium for Political and Social Research [distributor], 2023-07-27. https://doi.org/10.3886/tt1k-sk28 000000031 520__ $$aThe metrics in this dataset measure users who viewed posts with links to civic news domains. The dataset contains domain-level metrics from Facebook activity data for adult U.S. monthly active users, aggregated over the study period. Includes content views, audience size, content attributes, user attributes. 000000031 536__ $$oMeta Platforms, Inc. 000000031 540__ $$aThis dataset has two levels of access: Public and Virtual Data Enclave. <ul> <li>Public files can be downloaded directly from the dataset record. Typically, documentation files such as READMEs and codebooks are made public.</li> <li>Virtual Data Enclave files have access restrictions due to the sensitivity of the data or data sharing requirements. These data require an application. Once your application is approved, researchers will access and use the data inside ICPSR’s secure computing environment, called our Virtual Data Enclave (VDE). Click the “Apply for Access” button below to apply through our application portal.</li> </ul> 000000031 650__ $$asocial media 000000031 650__ $$apolitical attitudes 000000031 650__ $$apolitical behavior 000000031 650__ $$aelections 000000031 651__ $$zUnited States 000000031 655__ $$aweb platform data 000000031 720__ $$aMeta Platforms, Inc.$$eData Collector$$7Organizational 000000031 791__ $$tAsymmetric ideological segregation in exposure to political news on Facebook$$aJournal Article$$whttps://doi.org/10.1126/science.ade7138$$2DOI 000000031 8564_ $$yData dictionary$$9d9975640-6a64-49b7-9a30-d97d2af2698d$$s44149$$uhttps://socialmediaarchive.org/record/31/files/data_dictionary_political_segregation_paper.xlsx 000000031 8564_ $$yVariable descriptions$$960f335a3-c32f-40ce-bfc7-9921ce3027c9$$s76863$$uhttps://socialmediaarchive.org/record/31/files/variables_political_segregation_paper.csv 000000031 8564_ $$yProject-level codebook$$9783c95c1-0176-486c-b3d3-3e102b931359$$s724746$$uhttps://socialmediaarchive.org/record/31/files/US2020_FB%26IG_Elections_External_Codebook.pdf 000000031 8564_ $$yGlossary of terms$$9709b7009-7bc6-4ced-a85f-f31e96f4f02e$$s33969$$uhttps://socialmediaarchive.org/record/31/files/US2020_Glossary.xlsx 000000031 906__ $$a2020-09-01$$b2021-02-01 000000031 908__ $$aFacebook 000000031 910__ $$auser behavior tracking 000000031 912__ $$aSee the codebook for details on the experimental design. 000000031 914__ $$aDownload the data dictionary for variables present in this dataset. 000000031 930__ $$ahttps://icpsr.atlassian.net/servicedesk/customer/portal/53 000000031 980__ $$aFacebook 000000031 980__ $$aDatasets 000000031 980__ $$aUS2020 000000031 981__ $$aPublished$$b2023-07-27